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There are a lot of different methods to construct variational principles in physics. In this paper we
investigate and classify some of the known methods, focusing our treatment mainly on the variational
principles in nonequilibrium thermodynamics. This area of physics is remarkably rich in different
variational methods, because here we cannot obtain a classical, Hamiltonian variational principle for
the transport equations, as far as if we consider them in their original form and with their original

variables.
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IL. INTRODUCTION

In physics, dynamic behavior is usually described by
a dynamical law, i.e., by an ordinary or partial system
of differential equations governing the evolution of the
considered system in space and time. By help of an ex-
tremum principle we can construct the governing differ-
ential equations. Such an extremum principle represents
an alternative description of the dynamics, also suggest-
ing a tool for generalizations and offering methods to
solve the differential equations. These are the reasons
why we think that extremum principles are important
both from theoretical and practical points of view [1,2].

The relationship between these alternative descriptions
is one of the basic questions of the calculus of varia-
tions. We can distinguish between differential and in-
tegral principles and a lot of different variational pre-
scriptions. This variety of the extremum principles and
methods sometimes makes it possible to give alternate
variational formulations for the same differential equa-
tion. A good example is classical mechanics of mass-
points where a great collection of integral and differential
principles exists. However, usually we are looking for a
so-called “Hamiltonian” variational formulation [3], that
is, we prefer a given type of integral principle with well
defined variational prescriptions. There are well known
methods as to how we can get the differential equations
from an extremum principle, moreover we know well de-
fined conditions on the solution of the inverse problem,
the possibility for constructing a Hamiltonian variational
principle belonging to a given differential equation [4,5].
On the basis of these conditions we can conclude that for
many dynamical laws in physics there definitely does not
exist an appropriate Lagrange function or Lagrange den-
sity (variational potential) that would satisfy the require-
ments of such a formulation. But the question is believed
to be such an important one that several attempts exist
to circumvent the mentioned classical conditions. In con-
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tinuum physics and nonequilibrium thermodynamics the
transport equations (heat conduction equation, Navier-
Stokes equation) have been challenging the researchers
for more than a century. After the development of On-
sager’s irreversible thermodynamics, the attempts of con-
structing a variational principle renewed [6-11] and in-
spired new ideas. Thus a lot of “variational principles”
appeared in this field. Recently dynamic equations of
extended irreversible thermodynamics have been the pa-
rade ground of old and more modern methods.

Knowing the strict conditions for the existence of a
Hamiltonian principle we can state that the transport
equations do not have a variational potential. This can
be connected in some sense to their basic structure, for
example the presence of a first time derivative in them. If
we want to construct variational methods for these equa-
tions we must go beyond the Hamiltonian formulation.
Therefore there are a lot of new ideas and unusual pre-
scriptions in the new suggestions. The developers of these
principles usually generalize some elements of the formal-
ism of the classical variational calculus, mostly without
a careful examination of the mathematical meaning of
the constructed algorithms. Under these circumstances
some new methods do not deserve the name “variational
principle” as far as we understand it in a mathematical
sense. However, even in this case these unconventional
methods can be the root of better understanding and of
developing new numerical methods.

In this paper we will examine some variational meth-
ods and principles of physics, focusing our treatment on
the basic structure of the construction and on a classi-
fication of the existing methods. Most of our examples
are from nonequilibrium thermodynamics, but there are
important tricks in this field that were not often applied
yet.

The paper contains three sections. In Sec. II we formu-
late the conditions of the existence of a variational poten-
tial (action functional) for a given differential equation.
Section III gives the classification and at the end there is
a discussion.
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II. THE INVERSE PROBLEM
OF THE CALCULUS OF VARIATIONS

In this section we summarize some results on the con-
ditions of how a differential equation can be the Euler-
Lagrange equation of a variational potential. We have to
introduce some notions and notations to be able to for-
mulate the variational methods of nonequilibrium ther-
modynamics in a sufficiently exact manner. Here we try
to reduce the used mathematics to a minimum, consid-
ering the structural questions only. In the following, V
and W are normed spaces, Lin(V, W) denotes the vec-
tor space of V— W (not necessarily continuous) linear
functions, and U is an open subset of V.

Definition II.1. A function f : U — V™ is called potent
on U, if a function F' : U — R exists, so that DF(z) =
f(x) for every x € U. Then F is called the potential of

Here D denotes the strong or Fréchet derivative of the
function. The notion variational potential is used for po-
tentials in variational principles. In this case U and V
are function spaces; they are sets of functions furnished
with topologies (norms).

Definition II.2. A function T €Lin(V,V™*) is called
symmetric, if (Tx,y) = (Ty,x) for every x,y € V.

Here (—,—) denotes the effect of the elements of
the dual space V* on the elements of V, therefore
(=,—): V*xV 5 R, so that (p,x) — (p,x), where
x€V,pe V™

After these preparations the most important result
about the existence of variational potentials can be for-
mulated as follows.

Theorem II.1. If a function f : U — V* is continuously
differentiable for every z € U and D f(z) € Lin(V,V*) is
symmetric, then f is potent on U.

Proof. The theorem is a trivial modification of [5, p. 56]
taking into account that if a function is weakly differen-
tiable in a neighborhood of a point inside of its domain,
and its weak derivative is continuous at the point, then
the function is strongly differentiable and its strong and
weak derivatives are equal at the given point.

The finite dimensional versions of this theorem are well
known in physics. For example, we can find it if we in-
vestigate whether a force field is conservative (potent) or
not. The vanishing of the curl of the force field is equiv-
alent to the system being conservative. Moreover this
statement is equivalent to the theorem mentioned above
applied to this very special case.

There are some elements in the theorem which are
worthwhile to remember for infinite dimensional appli-
cations.

Remark 1. The existence of the derivative of f : U —
V* depends on the norm given on V. There may be
norms for which f is differentiable and there are other
norms for which f is not differentiable. In a finite di-
mensional vector space all norms are equivalent to each
other (they define the same topology). Thus the exis-
tence of a potential for a given f does not depend on the
norm in finite dimensional spaces.

Remark 2. The other important fact is that a poten-
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tial exists only for functions mapping V — V* because
a derivative of a function V — R is necessarily the el-
ement of V — V*. With the help of a scalar product
the elements of a vector space can be identified with the
elements of its dual in a natural way. In the following
we will suppose that the problems can be formulated in
Hilbert spaces, so we do not need to deal with duals. In
this case the duality mapping can be identified with the
scalar product.

Remark 3. In the calculus of variation one usually deals
with weak derivatives. In this case we cannot deal with
norms on the domain of the given function which can be
helpful in special problems. However the theorems and
definitions are more simple with strong derivatives and
some care makes the difficulties manageable.

Remark 4. In the following a mapping (or function) is
called an operator, if its domain and its range are spaces
of functions. A mapping is called a functional, if its do-
main is a function space and its range a linear space of
real (or complex) numbers. In this sense we will speak
of potent operators and variational functionals. Actually
we should specify the domain and range of the corre-
sponding operators properly. The correct specification of
function spaces that is the consideration of the boundary
and initial conditions is an essential part of the applica-
tion of the following methods. We never want to find a
variational principle for a given equation but for a given
problem: an equation with the necessary boundary and
initial conditions [12].

Ezample. With help of theorem II.1 the general struc-
ture of the “Hamiltonian” variational principles is well
understandable. Let L denote a continuous linear oper-
ator from a Hilbert space to another one. Suppose that
this operator is symmetric. Then the self-adjointness of
the operator follows from the continuity. In this case the
generally used variational potential is S(¢) = (¢, Ly},
where ¢ is an element of the Hilbert space. It is easy to
calculate the strong derivative of S:

DS(p)dp = 65(p) = 5%(«), Ly)

1 R 1,
= 580, L) + 3 (¥, Lé¢)

L+1* 5
= <5<.0, 3 <p> = (3¢, Lp) = 0,

where L* denotes the adjoint of L. Here we denoted two
different things with the same letter, the strong (or weak)
derivation with § (“the variation of S”) and the elements
of the domain of the derivative with §¢ (“the variation of
©”). This notation is well accepted and used in physics,
and the classical literature of the calculus of variation.
Here the different meanings of 6 can be grasped with the
use of affine spaces. If the scalar product is represented
by a Lebesque integral, the equality above is equivalent
to Ly = 0, as is expected (Lagrange lemma).
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III. CLASSIFICATION

Generally, most of the differential equations cannot be
derived as a Euler-Lagrange equation of a variational po-
tential because their derivatives are not symmetric. The
importance and the need of extremum principles for these
problems resulted in a lot of methods for constructing
potentials for nonpotent operators as well. In the follow-
ing a classification of the most important ideas is given.
Some other aspects of this classification can be found in
(8, pp. 307-312], [13,14], and especially in [15].

© denotes a nonpotent operator and La (not neces-
sarily symmetric) linear operator on a Hilbert space H.
A variational principle shall be formulated for the equa-
tion ©(p) = 0 or Ly = 0. Usually in nonequilibrium
thermodynamics © and L are differential operators.

A. Method of additional variables or dual principles

The essence of this trick is that more variables (and
more equations) are introduced into the problem, thus
extending the corresponding function space in such a way
that the original operator will be a part of a potent op-
erator. The most important problem of this method is
always the “physical meaning” of the new variables and
equations. )

A variational potential is sought for the equation Ly =
0, where ¢ € H. According to this method we take
the adjoint L* of L, and we exploit that the composite

operator
0 L*
L 0

is symmetric on the extended H x H* Hilbert space. Re-
ally, a corresponding variational potential can be con-
structed for the equations L(p =0 and L* *=0:

S(p,e*) = [(w L) + (L*o", w)]

N)Ir—l

where ¢* € H*.

Ezample. A well known example is the variational
principle for the (H + E)¢ = 0 Schrédinger equation,
where the wave function ¢ is an element of the function
space of square integrable functions, and H is a Hamilton
operator. Here a formal variational potential is [16]

3(¢*,4) = / " (H + B)¢da.

References. Another nomination of the method of dual
principles is the “method of mirror equations” in Morse
and Feshbach [16, pp. 314-316 and 335-337]. The ex-
tension of this method for nonlinear operators was for-
mally a “multiplication” of the equation with the new
variable, like the example of the Schrodinger equation,
or can be considered as an “extension” of the concept
of the adjoint to nonlinear operators [7,8]. However it
has a clear and well discussed mathematical formulation
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(see, for example, [17]). Direct methods coming from
this kind of principle are equivalent with the Galerkin
method applied for the operator (differential equation)
directly. These extensions are sometimes called “comple-
mentary principles” in [18-20] or “composite principles”
[13,21]. Examples for the application of this method in
continuum physics is given by Collins [22].

A hardly discussed but important problem in connec-
tion with this method is its formal character: the result-
ing dual equations usually lack any physical meaning.
In the case of the Schrodinger equation this fact is well
known, because here the multiplication of the wave func-
tion with its conjugate results in the probability density.
But, for example, in Anthony’s method [23,24], which
introduced a variational formalism for the heat conduc-
tion equation by quantum mechanical analogies, the in-
terpretation is difficult. Of course, there are examples for
which the introduced new variables are physical quan-
tities [25,26]. Another important example for the ap-
plication of physically meaningful additional variables is
the governing principle of dissipative processes. Here the
thermodynamical currents are the new variables and the
constitutive functions defining them are the additional
equations [27,9].

B. Method of integrating operator

In this and in the following method we do not refer to
a particular operator, but only to its kernel. We denote
two operators as equivalent if their homogeneous equa-
tions have the same solutions, that is, the kernels of the
two operators are the same. This is a well acceptable
agreement from a physical point of view.

The essence of the method of an integrating opera-
tor consists in considering instead of the operator © a
composite operator Ao ©® in a special way: () The com-
position should be meaningful (DomA CRan®); (i) the
corresponding equations should have the same solutions
[Ker(Ao®) = Ker@] (iii) the composite operator (Ao ©)
is a potent one. A is called an integrating operator.

There are two important special applications of this
method:

(i) Method of least squares. For continuous linear op-
erators (L) the integrating operator can be the adjoint
of the original one (A = L*). In this case a variational
potential is

8(p) = 5 (Lo, Lo).

Here the Euler-Lagrange equation is .f/*Ai/(p = 0, which
has the same solutions as Ly = 0 if L* is invertible.
A well known example is the Gauss principle of “least
constraint” in mechanics [1,2]. A direct application to
nonlinear heat conduction is [28].

(ii) Integrating multipliers. In this case A is restricted
to a function of the variables [A = I(¢)] and is called an
integrating multiplier.

FEzample. An important special example is when ¢ €
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C?(R) and the nonpotent operator is L = (T% + 4y,
7 € R. In this case et/TL is potent and a variational
potential is S(p) = —et/"( dt )2.

The special trick showed in the example is applied to
the equations of extended irreversible thermodynamics
by Vujanovic and Sieniutycz [29-33] and others. A more
systematic treatment of the method of integrating mul-
tipliers in field theories can be found in [34].

A general formulation of this method is due to Tonti
[12], who showed that an integrating operator can be
constructed for every nonlinear operator in a way very
similar to the least squares, although this construction is
not unique. He obtains the “integrated equation” in the
following form:

5*0(p) - K - 6(p) =0,

where K is introduced to give compatibility between the
corresponding spaces, and it is a linear, symmetric, in-
vertible operator from Ran(©) to Dom[6*©O(y)]. In this
case under some more conditions on © this is the Euler-
Lagrange equation of the variational potential

3(p) = 5(6(0), K - 6(¢)).

_ There are several possibilities for the construction of
K.

Of course there is only one possibility for the construc-
tion of an integrating operator. Another way of the con-
struction is used by Gerjuoy and co-workers [35-40] and
is denoted as the method of “Lagrange multipliers.” This
method is not as elaborated mathematically as the one
before, but it is often applied.

Now we introduce an unknown operator 4 so that
Dom(i) CDom(®©), and we look for a variational poten-
tial of the shape S(p) = S(¢,a(p)). If we require the
following conditions:

818(,0(p)) =0, 1)
825 (¢, () = O(¢), (2)

the general solution of the second simple partial differen-
tial equation is

S(p,u) = (6(¢p),

Here w0 is an arbitrary function or functional. In this case
Eq. (1) gives a condition to determine @(¢p):

015(, ()89 = (50(p)5p,u) + 81b(p)5¢ = 0.

u) + w(p).

~

In particular cases we can determine 4 relatively easily
and write down the particular form of the variational
potential S(¢). The resulting Euler-Lagrange equation
is

*4(¢)O(p) =0,

and this is equivalent to ©(p) = 0, if §*a(p) is invert-
ible. Technically the determination of W so that §*@(yp)
is invertible represents the crucial point of this method.

These examples show that there is a great flexibility in
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constructing an integrating operator and consequently in
obtaining variational potentials. Generally the applica-
tion of theorem II.1 allows us to write down a functional
differential equation for the operator A:

5A 0 B(p) - 60(p) = 6*O(p) - 6*A 0 O(p).

Determining the explicit solution of this equation seems
hopeless, but some special assumptions and the investi-
gation of particular examples may simplify the procedure
and can lead to new results.

C. Method of transformation of variables

The essence of this method is that we change the inde-
pendent variable into an operator, more precisely, instead
of the operator © we consider a composite operator © o @
in a special way: (i) The composition should be mean-
ingful ( Rang CDom®); (ii) the corresponding equations
should have the same solutions:

/\:c,m € Ker(0® 0 @) & y := p(z) € Ker®,
which results in
¢(Ker(6 0 $)) = Ker®;

(iii) the composite operator (C:) o ) is a potent one. We
can see that this method represents the counterpart of
the method of integrating operators.

Fzample. The best known example is the varia-
tional principle for the Maxwell equations in vacuum.
These equations are nonpotent in their original variables
(E,B), but introducing the scalar and the vector poten-
tial (A, ®) the resulting wave equations are potent ones.

This special example motivated us to introduce new
variables £ which should be called potentials. If ¢ is a
composition operator (a composition with a simple func-
tion) Dom ¢ =Ranf and $(§) = po&, the transformation
is called an algebraic one.

These algebraic transformations are widely used for
constructing variational principles for perfect fluids [41].
A more general formulation of this method for special
nonlinear operators (and some applications) is given by
Nyiri [42]. He constructs a variational potential for oper-
ators in the form é(cp) = ﬁf((p), where L is a linear oper-
ator and f(¢y) is a composition of functions. The essence
of his method shows similarities with that of Gerjuoy et
al. An application in nonequilibrium thermodynamics
and the search for some physical consequences is due to
Gambar and Markus [43-46].

Using Nyiri’s method we look for a variational poten-
tial in the form $(¢) = S(¢&,¢(£)). If we require the
following conditions:

815(&,4(8)) = 6(£(9)), 3)

825(&,¢(€)) =0, (4)

the general solution of the first partial differential equa-
tion is
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S(&,0) = (6(), &) + W (p).

Here w is an arbitrary function or functional. In this case
Eq. (4) is a condition to determine ¢(§):

8,5(¢,9)5p = (50(p)d¢p, £) + 61 (p)d¢p = 0.

Now the explicit determination of ¢ can be technically
more difficult than in the case of Gerjuoy et al., because
it requires the determination of the inverse of a nonlinear
operator. In the special case treated by Nyiri we need to
invert a function only. Now the full form of the varia-
tional potential is as follows:

5(8) = (6(£(¢)), &) + w(5(8))-

The resulting Euler-Lagrange equation is the original one
(in contrast to the method of Gerjuoy et al.), with the
introduced new variables

O(4(8)) = 0.

Now we can choose @ to make the computation simple.

If we try to apply theorem II.1, we can get a condition
for the determination of ¢, like in the method of inte-
grating operators. Only a detailed investigation of this
functional differential equation can show whether another
constructive method exists or not.

D. Method of modifications

These methods are sometimes referred to as quasivari-
ational principles, or “restricted” variational principles
[6,8,11]. Two types of them can be distinguished.

1. Modified operators

By this method the operator © is modified in such a
way that the transformed operator ©,, will be potent.
The domain of the modified operator is the same as the
original one. Of course, in this case variational potentials
exist only for the modified operator, not for the original
one.

“Variational principles” coming from the method of
modified operators are usually believed to be valid in a
more general sense than they really are. For instance,
the resulting Euler-Lagrange equations are transformed
to get back the original operator. Sometimes the method
is interpreted as the application of a “restriction” because
the modification is usually a restriction of the original
operator, as it is shown in the following example. How-
ever, well applicable numerical methods can be elabo-
rated with the help of this procedure to solve the original
equation.

Ezample. The typical example is the stationary heat
conduction equation with a temperature-dependent heat
conduction coefficient: ©(T) = V(A(T)VT). The usual
modification is the following ©,,(T) = V(A(To)VT).
Here Ty is a given arbitrary temperature. If we write
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down a variational principle for the modified equation
[where A(T') is a given function which has to be taken at
T = To|, then we can get information for solutions of the
original equation, too. The numerical method is a special
fix point iteration. According to the iteration scheme the
solution of the equation 0, (T) = V(A(T,)VT) (gener-
ated by a direct method from the variational principle)
gives Tp41.

References. This method was originally invented by
Rosen [47], applied among others by Glansdorff and Pri-
gogine and his co-workers in the method of local poten-
tials [48,49], and by Lambermont and Lebon [50] in their
variational method.

2. Modified function spaces

In this case the domain of the original operator is re-
stricted, so that the originally nonpotent operator be-
comes potent on the restricted domain. With other words
the operator is modified by restricting its domain and not
its “shape.”

The modification of function spaces leads to well de-
fined extremum problems on an appropriate “restricted”
function space for a differential equation. Moreover, in
the case of usual initial-boundary value problems this
procedure can lead to well manageable numerical meth-
ods for the original equation too [52,49]. Thus Finlayson
is wrong in declaring that this method is out of the frame-
work of the calculus of variation [8, pp. 342 and 343].

References. A classical example of application of this
method is Gauss’ principle of “least constraint” in me-
chanics [1,2]. In practice this method is often applied to
get variational principles for differential equations con-
taining first order time derivatives. This is the case in
nonequilibrium thermodynamics where it was introduced
by Rosen [51], using the method of potentials [48,49] or
in different forms of the Gyarmati principle [27].

Remark. If we use the hint “the time derivative must
be held fixed during the variation,” then such a modified
function space is introduced for the variation.

Finally we remark that the different methods men-
tioned here can be mixed for constructing variational
principles. For example, this is the case in the method
of local potentials [48,49] in which both types of modifi-
cations of this section are used. If we apply this method
to the full heat conduction equation, we have to modify
the function space to overcome the nonpotentness of the
first time derivative and we have to modify the opera-
tor as well to solve the problem of the quasilinear term.
The other example is the variational principle of Anthony
[23,24], where we can find a mixing of the method of ad-
ditional variables and variable transformations. The last
and perhaps the most complex example is the governing
principle of dissipative processes of Gyarmati. This prin-
ciple exploits the special structure of the transport equa-
tions of Onsager’s irreversible thermodynamics and does
the following: introduces the thermodynamical currents
as additional variables (here the additional variables have
a physical meaning); has a Gaussian form resembling the
method of least squares [9,53]; modifies the original func-
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tion space; and possesses some other peculiarities too. A
detailed investigation of the structure of the governing
principle of dissipative processes according to the points
mentioned above is given in [54].

IV. DISCUSSION

Here we did not made any efforts to give a complete
reference list of the flood of literature on variational prin-
ciples of nonequilibrium thermodynamics, but the refer-
ences mentioned characterize typical examples. However,
we truly hope that the presented classification covers all
logical possibilities and that our references typify the ex-
isting methods.

After having discussed these methods, it seems to be
more plausible than before that potent differential equa-
tions (or operators) can be constructed by help of these
different methods. Another remark is that we cannot
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hope to construct a single variational principle for entire
nonequilibrium thermodynamics, or for any other branch
of physics. There are always possibilities to construct
several principles being equal or more or less acceptable.
Of course there are always physical constraints, but the
remaining freedom is still enormous.

As a conclusion we want to remark that this accumu-
lated knowledge of different possibilities of constructing
variational principles can change today the art of search-
ing and finding such variational principles to a more sys-
tematic procedure. For discussing variational principles
of irreversible processes beyond nonequilibrium thermo-
dynamics we want to refer to Ichiyanagi’s detailed paper
[55].
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